
Java PathExplorer - A Runtime Veri�cation Tool

Klaus Havelund

Kestrel Technology

NASA Ames Research Center

Mo�ett Field, CA, 94035

havelund@ptolemy.arc.nasa.gov

Grigore Ro�su

Research Institute for Advanced Computer Science

NASA Ames Research Center

Mo�ett Field, CA, 94035

grosu@ptolemy.arc.nasa.gov

Keywords Software testing, runtime veri�cation,

event tracking, temporal logic based monitoring, er-

ror pattern analysis, concurrent programs, dead-

locks, data races, Java, byte-code instrumentation.

Abstract

We describe recent work on designing an environ-

ment, called Java PathExplorer, for monitoring the

execution of Java programs. This environment fa-

cilitates the testing of execution traces against high

level speci�cations, including temporal logic formu-

lae. In addition, it contains algorithms for detecting

classical error patterns in concurrent programs, such

as deadlocks and data races. An initial prototype of

the tool has been applied to the executive module of

the planetary Rover K9, developed at NASA Ames.

In this paper we describe the background and mo-

tivation for the development of this tool, including

comments on how it relates to formal methods tools

as well as to traditional testing, and we then present

the tool itself.

1 Introduction

Software is getting an increased importance in

the development of space craft and rover technol-

ogy within the space agencies. It is recognized

that future space crafts will become highly au-

tonomous, taking decisions without communication

from ground. Hence, the required software is be-

coming more complex, increasing the risk of mission

failures. Testing of such systems therefore becomes

crucial. Traditional testing techniques, however, are

very ad hoc and do not allow for formal speci�cation

and veri�cation or testing of the properties that a

system needs to satisfy.

The Automated Software Engineering group at

NASA Ames Research Center has for the last three

years worked on developing advanced veri�cation

and testing technology for space applications. Part

of this work has consisted of performing case studies

using formal methods, in particular model checking,

to analyze space craft software [6]. Based on the

experiences of these case studies, two tools have fur-

thermore been developed, both supporting full state

space exploration of Java programs using explicit

state model checking techniques [7, 14]. These tech-

niques allow for checking temporal logic properties

on programs that have a few million states, but fail

to apply on large programs. Abstraction is required

in order to increase the applicability of such tech-

niques, an often manual and labor-some process.

We present a new runtime veri�cation system,

Java PathExplorer (JPaX), for monitoring of Java

program execution traces. The general concept con-

sists of extracting events from an executing program,

and then analyzing the events via a remote observer

process. The observer performs two kinds of ver-

i�cation: logic based monitoring and error pattern

analysis.

Logic based monitoring consists of checking exe-

cution traces against user-provided formal require-

ment speci�cations, written in high level logics.

Logics are currently implemented in the speci�ca-

tion language Maude [1], a high-performance system

supporting both membership equational logic and

rewriting logic. Maude allows to de�ne new logics in

a exible manner, such as for example temporal log-

ics, together with their operational semantics. Cur-

rently we support future time and past time linear

temporal logic as prede�ned logics. The implemen-

tation of both these logics cover less than 130 lines,

hence de�ning new logics, for example domain spe-

ci�c ones, should be very feasible for an advanced

user. The current version of Maude can do up to

3 million rewritings per second on 800Mhz proces-

sors, and its compiled version is intended to support

15 million rewritings per second. Hence Maude can

be used as the monitoring engine that performs the

conformance checks of events against speci�cations.

Error pattern analysis consists of analyzing execu-

tion events using various error detection algorithms

that can identify error-prone programming practices.

Examples are unhealthy locking disciplines that may

lead to data races and deadlocks. For example, a

deadlock potential can be discovered from a single

trace, even if that particular trace has no deadlocks,

if it can be observed that lock acquisitions do not

follow a partial order. By not requiring the errors to

actually occur in order to be detected, this is a way

to obtain a high degree of coverage although only

one execution trace is examined. In general, we try

to identify various concurrency error patterns.

The idea of using temporal logic in program test-

ing is not new, and has already been pursued in the

commercial Temporal Rover tool (TR) [3], and in

the MaC tool [10]. TR allows the user to specify

temporal formulae as comments in programs. The

MaC tool is closer to what we describe in this pa-

per, except that its speci�cation language is very

limited compared to the Maude language. In ad-

dition, we combine speci�cation checking with error

pattern analysis. In a tool like Visual Threads [4, 13],

these runtime analysis algorithms have been hard-

wired into the system and are therefore di�cult to

change or extend by a user.

Eventually the system should allow to monitor

programs composed of subprograms written in dif-

ferent programming languages including also C++

and C. The system described in this paper will focus

on Java. A case study of 90,000 lines of C++ code

for a rover controller has been carried out, leading to

the detection of a deadlock with a minimal amount

of e�ort. It is our main goal to make the system as

general and generic as possible, allowing to handle

multiple language systems, and allowing new veri�-

cation rules to be de�ned, even de�ning new spec-

i�cation logics using Maude. This way we hope to

make the system a basis for experiments rather than

a �xed system.

The paper is organized as follows. Section 2 de-

scribes the overall architecture of the system. Section

3 describes the underlying logic formalisms for writ-

ing requirement speci�cations, while Section 4 de-

scribes some of the error detection algorithms for de-

bugging concurrent programs. Finally, Section 5 con-

tains conclusions and a description of future work.

2 System Architecture

The architecture of JPaX is shown in Figure 1. The

input to JPaX consists of two entities (or rather

pointers to these): the Java program in byte-code

format to be monitored (created using a standard

Java compiler) and the speci�cation script de�ning

what kind of analysis is requested. The output is a

(possibly empty) set of warnings printed on a special

screen.

Java
 Program

Bytecode

Instrumented
Bytecode

D
ip

at
ch

er

. . .

LTL

Datarace

Deadlock

Observer

Specifications

Verification

E
ve

nt
 S

tr
ea

m
Instrument

Compile

(JVM)
Execute

Instrumentation

Maude

Figure 1: JPaX Architecture

The speci�cation script consists of an instrumen-

tation script and a veri�cation script. The instru-

mentation script de�nes how the program should be

instrumented while the veri�cation script de�nes ex-

actly what kind of analysis should be performed, and

if logic based monitoring is requested: what proper-

ties should be veri�ed. Currently, the scripts are

written in Java, which calls Maude if needed. Thus,

high level Java language constructs can be used to

de�ne the boolean predicates to be observed. Then

the values of those predicates are shipped to Maude

for deeper logic-based analysis.

JPaX can be regarded as consisting of three

main modules: an instrumentation module, an

observer module, and an interconnection module

that ties them together through the observed event

stream. The instrumentation module performs a

script-driven automated instrumentation of the pro-

gram to be observed. The instrumented program,

when run, will emit relevant events to the interaction

module, which further transmits them to the obser-

vation module. The observer may run on a di�erent

computer, in which case the events are transmitted

over a socket. User de�ned options allow to de�ne

the general setup.

The instrumentation is performed using the Jtrek

Java byte-code engineering tool [2] from Compaq.

This tool allows to read Java class �les (byte-code

�les), traverse them as abstract syntax trees while

examining their contents, and insert new code in a

highly exible manner. The inserted code can access

the contents of the method call-time stack at run-

time, hence giving access to information needed in

the analysis. The extracted information is transmit-

ted in the events. The observer receives the events

and dispatches these to a set of observer rules, each

rule performing a particular analysis that has been

requested. Observer rules can be written in Maude

or in a traditional programming language such as

Java, or even C if speed is crucial. Generally, the

rule based design allows a user to easily de�ne new

runtime veri�cation procedures.

The only language speci�c part of the system is the

instrumentation module. If one wants to set up the

environment for a di�erent language, such as C++,

one will only have to replace this module. We tried

this together with Rich Washington, a member of

the Robotics group at NASA Ames, on a 90,000 line

C++ application, just activating the deadlock detec-

tion rule, and located a deadlock. This work will be

presented in a di�erent publication.

3 Logic based Monitoring

As previously mentioned, JPaX currently allows two

conceptually independent methodologies for runtime

veri�cation. One is speci�cation based monitoring,

which is the subject of this section, and the other

is error pattern analysis presented in the next sec-

tion. The main di�erence between the two is that

the �rst counts upon an underlying logic in which

the user can express any application dependent logi-

cal requirements, while the second implements more

or less standard programming language dependent

algorithms that detect typical concurrency error po-

tentials. In this way, we believe that JPaX o�ers a

large, if not a full, spectrum of possibilities for run-

time veri�cation.

In order to write a runtime requirement speci�ca-

tion, the user should �rst choose an appropriate logic

to express the intended properties. JPaX currently

provides linear temporal logics, both future time and

past time, as builtin logics, but one could relatively

easily de�ne new logics or enrich the existing ones.

Notice that multiple logics can be used in parallel, so

each property can be expressed in its most suitable

language. Since the Maude implementations of the

current logics are quite compact, we took the liberty

to include them in the paper.

3.1 The Maude Language

Maude [1] is a modularized speci�cation and veri�-

cation system that e�ciently implements rewriting

logic. It is relatively widely accepted that rewrit-

ing logic acts like a universal logic, in the sense that

other logics, or more precisely their syntax and op-

erational semantics, can be implemented in rewrit-

ing logic. Furthermore, Maude provides support for

meta-programming, so complex logic dependent rea-

soning strategies can be implemented as well; how-

ever, we didn't need the meta-level yet, but we ex-

pect to need it soon, as JPaX will be extended.

There is not enough space to present the Maude no-

tation in more detail here, but we'll introduce some

of it \on the y" as we give examples, such as the

following one.

3.1.1 Propositional Calculus

The following module for propositional calculus,

which is heavily used in JPaX, implements an ef-

�cient procedure due to Hsiang [9] to decide validity

of propositions:

fmod PROP-CALC is pr FORMULA .

*** Constructors ***

op _/_ : Formula Formula -> Formula [assoc comm] .

op _++_ : Formula Formula -> Formula [assoc comm] .

vars X Y Z : Formula . var As* : AtomState* .

eq true /\ X = X . eq false /\ X = false .

eq false ++ X = X . eq X ++ X = false .

eq X /\ X = X .

eq X /\ (Y ++ Z) = (X /\ Y) ++ (X /\ Z) .

*** Derived operators ***

op _\/_ : Formula Formula -> Formula [assoc] .

op !_ : Formula -> Formula .

op _->_ : Formula Formula -> Formula .

op _<->_ : Formula Formula -> Formula .

eq X \/ Y = (X /\ Y) ++ X ++ Y .

eq ! X = true ++ X .

eq X -> Y = true ++ X ++ (X /\ Y) .

eq X <-> Y = true ++ X ++ Y .

*** Data structure & Semantics

eq (X /\ Y){As*} = X{As*} /\ Y{As*} .

eq (X ++ Y){As*} = X{As*} ++ Y{As*} .

endfm

The underscores stay for arguments. The mod-

ule FORMULA which is \protected" (or imported) de-

�nes the infrastructure for all the user-de�ned logics.

That includes some designated basic sorts (or types)

such as Formula for syntactic formulae, FormulaDS for

formula data structures needed when more informa-

tion then the formula itself should be kept for the

next transition as in the case of past time linear

temporal logic, AtomState for assignments of boolean

values to atomic propositions and AtomState* for as-

signments as above together with �nal assignments,

i.e., those that are followed by the end of trace (our

semantics for the end of the execution trace is that of

a continuous process that doesn't change the state).

The user is free to extend these types and/or pro-

vide appropriate implementations for them as in the

module above. Perhaps the most important oper-

ation provided by the module FORMULA is an oper-

ation f g:FormulaDS AtomState -> FormulaDS which

updates the formula data structure when an (ab-

stract) state change occurs during the execution of

the program. Notice that this update operation acts

like a morphism for propositional calculus, so it ba-

sically evaluates the propositions in the new state.

3.2 Linear Temporal Logics

Linear temporal logics (LTL) are widely accepted

as reasonably good formalisms to express require-

ments of reactive systems. However, there is a tricky

aspect of speci�cation based monitoring which dis-

tinguishes it from other formal methods techniques,

such as model checking and theorem proving: the

end of trace. Sooner or later, the monitored pro-

gram will be stopped and so its execution trace. At

that moment, the observer needs to take a decision

regarding the validity of the checked properties. Let

us consider for example the formula �(p ! �q). If

each p was followed by at least one q during the mon-

itored execution, then, at some extent one could say

that the formula was satis�ed; but one should be

aware that this is not a de�nite answer because the

formula could have been very well violated in the fu-

ture if the program hadn't been stopped. If p was

true and it was not followed by a q, then one could

say that the formula was violated, but it may have

been very well satis�ed if the program had been let to

continue its execution. However, there are LTL prop-

erties that give the user absolute con�dence during

the monitoring. For example, a violation of a safety

property reects a clear misbehavior of the moni-

tored program.

The lesson that we learned from experiments with

LTL monitoring is twofold. On the one hand, we

learned that, unlike in model checking or theorem

proving, LTL formulae and especially their violation

or satisfaction must be regarded with provisions dur-

ing monitoring. On the other hand, we developed a

belief that LTL may not be the most appropriate for-

malism for logic based monitoring; other more spe-

ci�c logics, such as real time LTL, interval logics, or

even undiscovered ones, could be of greater interest

than pure LTL. In the next subsections we briey

describe our simple implementations of future time

and past time LTL in Maude.

3.2.1 Future Time LTL

Future time LTL can be implemented more easily

than we initially thought on top of propositional cal-

culus. It basically needs only 8 rules, a pair for each

operator:

fmod FT-LTL is ex PROP-CALC .

*** Syntax ***

ops ([]_) (<>_) (o_) : Formula -> Formula .

op _U_ : Formula Formula -> Formula .

*** Data structure & Semantics

vars X Y : Formula . var As : AtomState .

eq ([] X){As } = ([] X) /\ X{As} .

eq ([] X){As *} = X{As *} .

eq (<> X){As } = (<> X) \/ X{As} .

eq (<> X){As *} = X{As *} .

eq (o X){As } = X .

eq (o X){As *} = X{As *} .

eq (X U Y){As } = Y{As} \/ (X{As} /\ (X U Y)) .

eq (X U Y){As *} = Y{As *} .

endfm

Each pair of rules says how a formula transforms

during the execution of the program. More precisely,

they implement the following simple equivalences:

st j= ' i� t j= 'fsg

s j= ' i� 'fs�g = true;

where st is a trace formed by a state s followed by

a nonempty trace t, while s can also be viewed as

the trace consisting of s followed by the end of trace.

A proof of correctness of this algorithm is given in

[8]. Despite its overall exponential complexity, this

algorithm tends to be quite acceptable in practical

situations. We couldn't notice any sensible di�erence

in global concrete experiments with JPaX between

this simple 8 rule algorithm and an automata based

one that implements in 1,400 of Java code a Buchi

automata algorithm adapted to �nite trace LTL (see

Subsection 3.3).

3.2.2 Past Time LTL

Past time LTL is useful for especially safety prop-

erties. These properties are very suitable for logic

based monitoring because once they fail we know for

sure that the program is not correct. The imple-

mentation of past time LTL is a bit more tedious.

It is also built on top of propositional calculus, by

adding the usual two past time operators, ~ for pre-

vious and S for since, and then appropriate data

structures and semantics:

fmod PT-LTL is ex PROP-CALC .

*** Syntax

op ~_ : Formula -> Formula .

op _S_ : Formula Formula -> Formula .

*** Data structure & Semantics

op ptLtl : Formula -> FormulaDS .

op atom : Atom Bool -> FormulaDS .

ops prev : FormulaDS Bool -> FormulaDS .

ops and xor since : FormulaDS FormulaDS Bool -> FormulaDS .

vars X Y : Formula . vars D Dx Dy D' Dx' Dy' : FormulaDS .

var B : Bool . var A : Atom . var As : AtomState .

eq ptLtl(true){As} = true . eq ptLtl(false){As} = false .

eq ptLtl(A){As} = atom(A, (A{As} == true)) .

eq ptLtl(~ X){As} = false .

ceq ptLtl(X S Y){As} = since(Dx, Dy, [Dy])

if Dx := ptLtl(X){As} /\ Dy := ptLtl(Y){As} .

ceq ptLtl(X /\ Y){As} = and(Dx, Dy, [Dx] and [Dy])

if Dx := ptLtl(X){As} /\ Dy := ptLtl(Y){As} .

ceq ptLtl(X ++ Y){As} = xor(Dx, Dy, [Dx] xor [Dy])

if Dx := ptLtl(X){As} /\ Dy := ptLtl(Y){As} .

eq [atom(A,B)] = B .

eq [prev(D,B)] = B .

eq [since(Dx,Dy,B)] = B .

eq [and(Dx,Dy,B)] = B . eq [xor(Dx,Dy,B)] = B .

eq atom(A,B){As} = atom(A, (A{As} == true)) .

eq prev(D,B){As} = prev(D{As},[D]) .

ceq since(Dx,Dy,B){As} = since(Dx',Dy',[Dy'] or B and [Dx])

if Dx' := Dx{As} /\ Dy' := Dy{As} .

ceq and(Dx,Dy,B){As} = and(Dx',Dy',[Dx'] and [Dy'])

if Dx' := Dx{As} /\ Dy' := Dy{As} .

ceq xor(Dx,Dy,B){As} = xor(Dx',Dy',[Dx'] xor [Dy'])

if Dx' := Dx{As} /\ Dy' := Dy{As} .

eq atom(A,B){As *} = true .

eq prev(D,B){As *} = true .

eq since(Dx,Dy,B){As *} = true .

eq and(Dx,Dy,B){As *} = true .

eq xor(Dx,Dy,B){As *} = true .

endfm

The operation ptLTL initializes/creates the data

structure associated to a past time LTL formula, the

operation [] reads the current truth value of a for-

mula, while the operator f g updates a formula data

structure.

3.3 Observer Generation

As one naturally expects, monitoring via event ex-

traction can signi�cantly slow down the normal ex-

ecution of the monitored program. In particular,

the two event bu�ers of JPaX (one from the instru-

mented program to the observer and the other from

the observer to Maude) sometimes slow down the

original program by an order of magnitude. We are

still investigating the real reasons for this, but at this

stage we believe that a signi�cant factor comes from

the bu�er communication between the observer im-

plemented in Java and the logic engine implemented

in Maude. Therefore, it may be desirable to device

Java implementations that directly check formulae

against execution traces, at least for those logics that

turn out to be heavily used.

Since JPaX only uses linear temporal logics, we

concentrated only on future time and past time LTL

so far. In [12] we showed how one could generate a

dynamic-programming based algorithm from any fu-

ture time LTL formula, showing that it runs in time

O(nm), where n is the size of the trace and m is

the size of the formula. Unfortunately, that algo-

rithm visits the execution trace backwards, meaning

that a formula can be tested only after the program

is stopped and all its execution trace stored. Fortu-

nately, the same idea applied on past time LTL yields

by dualization a forwards algorithm which runs in

the same time; it is hard to believe that one can test

past time LTL formulae on �nite traces faster.

Taking into account the continuously decreasing

price of storage, the backwards algorithm for future

time LTL [12] is acceptable even beyond the proto-

typing stage of the tool. Our colleague Dimitra Gi-

annakopoulou took the challenge and implemented

in about 1,400 lines of Java code a modi�ed version

of a Buchi automata algorithm that takes into ac-

count the particularities of �nite trace LTL; the de-

tails of her implementation will appear elsewhere. It

seems that �nite trace LTL is a signi�cantly simpler

and more computable logic than the standard in�nite

trace LTL. In particular, we were able to show the

existence and then generate a minimal standard au-

tomaton from any formula, automaton that accepts

exactly those �nite traces that satisfy the formula;

this construction will also appear elsewhere.

Our main concern at this stage is to investigate

more suitable logics for monitoring than future time

LTL rather than generating e�cient implementa-

tions for formula checkers. The exibility and ease

in developing and/or modifying logics in rewriting

logic, as well as its expressivity, e�ciency and sup-

port for meta-programming, make Maude a perfect

choice as a logic engine to validate user de�ned re-

quirements at this early stage of JPaX.

4 Error Pattern Analysis

Error pattern analysis is conceptually based on an-

alyzing an execution trace using various algorithms

that are able to detect error potentials even though

errors do not explicitely occur in the examined exe-

cution trace. The goal is to extract as much infor-

mation as possible from a single execution trace to

be able to suggest problems in other execution traces

that have not been explored. Two examples of such

algorithms focusing on concurrency errors have been

implemented in JPaX: a data race analysis algo-

rithm and a deadlock analysis algorithm. Previously,

both algorithms have been implemented in the Vi-

sual Threads tool [4] to work for C and C++. Also,

in recent work we implemented the data race algo-

rithm and a variant of the deadlock algorithm in the

Java PathFinder tool [5] to work for Java by mod-

ifying the Java Virtual Machine described in [14].

Our contribution here is to make these algorithms

work for Java using byte-code instrumentation; to

integrate them with logic based monitoring; and to

make it possible for an advanced user to program

new error pattern analysis rules in a exible manner.

Error pattern analysis algorithms typically do not

guarantee that errors are found since they, after all,

work on a single arbitrary trace. They also may

yield false positives in the sense that analysis results

indicate warnings rather than hard error messages.

What is attractive about such algorithms is, however,

that they scale very well, and that they often seem

to catch the problems they are designed to catch.

That is, the randomness in the choice of run does

not seem to imply a similar randomness in the anal-

ysis results. In the following we will shortly describe

the data race and deadlock detection algorithms.

4.1 Data Race Analysis

This section describes the Eraser algorithm as pre-

sented in [13], and how it has been implemented in

JPaX to work on Java programs. A data race oc-

curs when two concurrent threads access a shared

variable and when at least one access is a write, and

the threads use no explicit mechanism to prevent the

accesses from being simultaneous. The Eraser algo-

rithm detects data races in a program by studying

a single run of the program, and from this trying to

conclude whether any other runs with data races are

possible. We will illustrate the data race analysis

with the following example.

1. class Value{

2. private int x = 1;

3.

4. public synchronized void add(Value v){x = x + v.get();}

5.

6. public int get(){return x;}

7. }

8.

9. class Task extends Thread{

10. Value v1; Value v2;

11.

12. public Task(Value v1,Value v2){

13. this.v1 = v1; this.v2 = v2;

14. this.start();

15. }

16.

17. public void run(){v1.add(v2);}

18. }

19.

20. class Main{

21. public static void main(String[] args){

22. Value v1 = new Value(); Value v2 = new Value();

23. new Task(v1,v2); new Task(v2,v1);

24. }

25. }

The Value class de�nes an integer variable x, a

synchronized method add for updating the variable

(adding the contents of another Value variable), and

an unsynchronized method get for reading the vari-

able. The Task class is a thread class, instances of

which can be started with the start method to ex-

ecute their run method. Two such tasks are started

in the main program on two instances of the Value

class. When running JPaX with the Eraser option

switched on, a data race potential is found, report-

ing that the variable x in class Value is accessed

unprotected by the two Task threads in lines 4 and 6

respectively. The problem detected is that one Task

thread can call the add method on an object, say v1,

with a parameter Value object v2, and this method

in turn calls the unsynchronized get method on v2.

The other thread can simultaneously make the dual

operation, hence, call the add method on v2. Hence

the x in v2 may be accessed simultaneously by the

two threads. In fact two data race warnings are emit-

ted since the same situation is possible with v1 and

v2 interchanged.

One could argue that all methods should be syn-

chronized such that data races can be detected us-

ing simple type checking. However it is often seen

that Java programmers avoid de�ning all methods as

synchronized in order to optimize the program (syn-

chronization slows down an application somewhat).

Furthermore, synchronization can alternatively be

achieved by executing synchronized statements such

as:

synchronized(v1){

v1.add(v2)

}

In this case it becomes impossible to detect data race

potentials syntactically. This is the situation in lan-

guages such as C and C++ using Pthreads [11].

The basic algorithm works as follows. Two data

structures are maintained in the observer: a thread

map keeps track of which locks are owned by any

thread at any point in time. The second data struc-

ture, a variable map, associates with each (shared)

variable in the program at any point in time the

biggest set of locks that has been commonly owned

by all accessing threads in the past. If this set be-

comes empty a data race potential exists. That is,

when a �eld is accessed for the �rst time, the locks

owned by the accessing thread at that time are stored

in this set. Subsequent accesses by other threads

causes the set to be reduced to its intersection with

the locks owned by those threads. An extra state ma-

chine is introduced for each �eld to keep track of how

many threads have accessed the variable and how.

This is used to reduce false positives in the case for

example �elds are initialized by a single thread with-

out locks (which is safe) or several threads just read

a variable after it has been initialized (which is also

safe). Amongst the events that are important for the

data race analysis are monitor lockings and releases;

either resulting from executing Java's synchronized

statements or from calling/returning from synchro-

nized methods. Furthermore, all accesses to �eld

variables and class variables are analyzed.

Deadlock Detection

A classical deadlock situation can occur where two

threads t1 and t2 share two locks v1 and v2, and they

take the locks in di�erent order. The deadlock will

arise if t1 takes v1 and t2 immediately after takes v2.

Now t1 cannot get v2 and t2 cannot get v1. Using

the previous example, we can create such a situation

if we wrongly try to repair the data race by de�ning

the get method in line 6 as synchronized:

6. public synchronized int get(){return x;}

Now the x variable can no longer be accessed simulta-

neously from two threads, and the data race module

will no longer give a warning. However, when run-

ning JPaX on the modi�ed program, a lock order

problem not present before is found and a warning

states that two object instances of the Value class are

taken in a di�erent order by the two Task threads,

and it indicates the line numbers where the threads

may potentially deadlock, hence where the access to

the second lock may fail: line 4 where the call of the

get method from the add method will lock the sec-

ond object. Note that this deadlock does not need

to occur in the execution in order for this warning

to be issued. In fact, any execution of this example

program will cause a warning to be issued.

The algorithm works as follows. Two data struc-

tures are maintained in the observer: as in the data

race algorithm a thread map keeps track of which

locks are owned by any thread at any point in time.

The second data structure, a lock graph, maintains

an accumulating graph of all the locks taken by

threads during an execution, recording locking or-

ders as edges. That is, an edge is introduced from a

lock v1 to a lock v2 in case a thread owns v1 while

taking v2. If this graph ever becomes cyclic it re-

ects a deadlock potential. Note that this algorithm

can catch deadlock potentials between many threads

as illustrated for example by the classical dining

philosopher's example, independent of the number of

philosophers. The events that are important for the

data race analysis are monitor lockings and releases;

either resulting from executing Java's synchronized

statements or from calling/returning from synchro-

nized methods.

5 Conclusions

A brief description of JPaX, a runtime veri�cation

environment currently under experimentation and

development, was presented. Motivation and inte-

gration in the overall NASA Ames automated soft-

ware engineering e�ort was highlighted, emphasizing

that our main goal was to smoothly combine test-

ing and formal methods, while avoiding some of the

pitfalls from ad hoc testing and the complexity of

full-blown theorem proving and model checking. A

general system architecture of JPaX was depicted,

followed by more detailed explanations of its com-

ponents, especially logic based monitoring and error

pattern analysis.

In future work on logic based monitoring, we will

experiment with new logics in Maude more appro-

priate to monitoring than LTL, such as interval and

real time logics and UML notations. The latter al-

lows to check original designs (via state charts and/or

sequence diagrams) against "real" execution traces.

A longer term agenda is oriented toward fast imple-

mentations of designated logics in more conventional

programming languages than Maude, thus improving

the overall speed of the monitoring process. Future

work on error pattern analysis will try to develop

new algorithms for detecting other kinds of concur-

rency errors than data races and deadlocks, and of

course to try to improve existing algorithms.

We will also study completely new functionalities

of the system, such as guided execution via code in-

strumentation to explore more of the possible inter-

leavings of a non-deterministic concurrent program

during testing; and guidance of the program dur-

ing operation once a requirement speci�cation has

been violated. Dynamic programming visualization

is also a future subject, where we regard a visualiza-

tion package as just another rule in the observer.

A more user friendly interface, both graphical and

functional, will be provided, in addition to an im-

proved modularization of the whole system such that

to easily adapt it to various programming languages

and various instrumenting methodologies. Of course,

the tool will be evaluated on real case studies.

References

[1] M. Clavel, F. J. Dur�an, S. Eker, P. Lincoln,

N. Mart��-Oliet, J. Meseguer, and J. F. Que-

sada. The Maude system. In Proceedings of

the 10th International Conference on Rewriting

Techniques and Applications (RTA-99), volume

1631 of LNCS, pages 240{243, Trento, Italy,

July 1999. Springer-Verlag. System description.

[2] S. Cohen. Jtrek. Compaq,

http://www.compaq.com/java/download/jtrek.

[3] D. Drusinsky. The Temporal Rover and the

ATG Rover. In SPIN Model Checking and Soft-

ware Veri�cation, volume 1885 of LNCS, pages

323{330. Springer, 2000.

[4] J. Harrow. Runtime Checking of Multithreaded

Applications with Visual Threads. In SPIN

Model Checking and Software Veri�cation, vol-

ume 1885 of LNCS, pages 331{342. Springer,

2000.

[5] K. Havelund. Using Runtime Analysis to Guide

Model Checking of Java Programs. In SPIN

Model Checking and Software Veri�cation, vol-

ume 1885 of LNCS, pages 245{264. Springer,

2000.

[6] K. Havelund, M. Lowry, and J. Penix. Formal

Analysis of a Space Craft Controller using SPIN.

In Proceedings of the 4th SPIN workshop, Paris,

France, November 1998. To appear in IEEE

Transactions of Software Engineering.

[7] K. Havelund and T. Pressburger. Model Check-

ing Java Programs using Java PathFinder. In-

ternational Journal on Software Tools for Tech-

nology Transfer, 2(4):366{381, April 2000. Spe-

cial issue of STTT containing selected submis-

sions to the 4th SPIN workshop, Paris, France,

1998.

[8] K. Havelund and G. Ro�su. Testing Lin-

ear Temporal Logic Formulae on Finite

Execution Traces. RIACS Technical re-

port, http://ase.arc.nasa.gov/pax, Novem-

ber 2000.

[9] J. Hsiang. Refutational Theorem Proving using

Term Rewriting Systems. PhD thesis, Univer-

sity of Illinois at Champaign-Urbana, 1981.

[10] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and

M. Viswanathan. Runtime Assurance Based

on Formal Speci�cations. In Proceedings of

the International Conference on Parallel and

Distributed Processing Techniques and Applica-

tions, 1999.

[11] B. Nichols, D. Buttlar, and J. P. Farrell.

Pthreads Programming. O'Reilly, 1998.

[12] G. Ro�su and K. Havelund. Synthesizing Dy-

namic Programming Algorithms from Linear

Temporal Logic Formulae. RIACS Technical re-

port, http://ase.arc.nasa.gov/pax, January

2001.

[13] S. Savage, M. Burrows, G. Nelson, P. Sobal-

varro, and T. Anderson. Eraser: A Dynamic

Data Race Detector for Multithreaded Pro-

grams. ACM Transactions on Computer Sys-

tems, 15(4):391{411, November 1997.

[14] W. Visser, K. Havelund, G. Brat, and S. Park.

Model Checking Programs. In Proceedings of

ASE'2000: The 15th IEEE International Con-

ference on Automated Software Engineering.

IEEE CS Press, September 2000.

